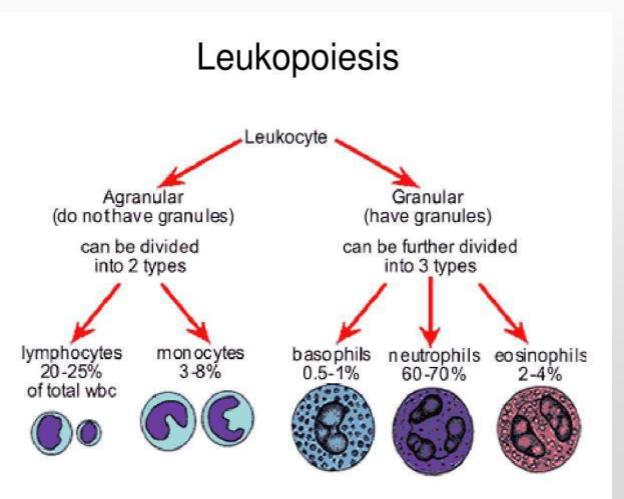


Hematopoiesis

- The process of formation of blood cells.
 - Red blood cells (RBC)
 - White blood cells
 - platelets.
- It's a continuous process that begins before birth and continues throughout life.
- Hematopoietic stem cells produce all blood cells.
- In children, hematopoiesis happens in long bones like the thighbone.
- In adults, hematopoiesis happens in the spine, hips, ribs, skull, and breastbone.
- The body produces billions of new blood cells each day to maintain a steady supply

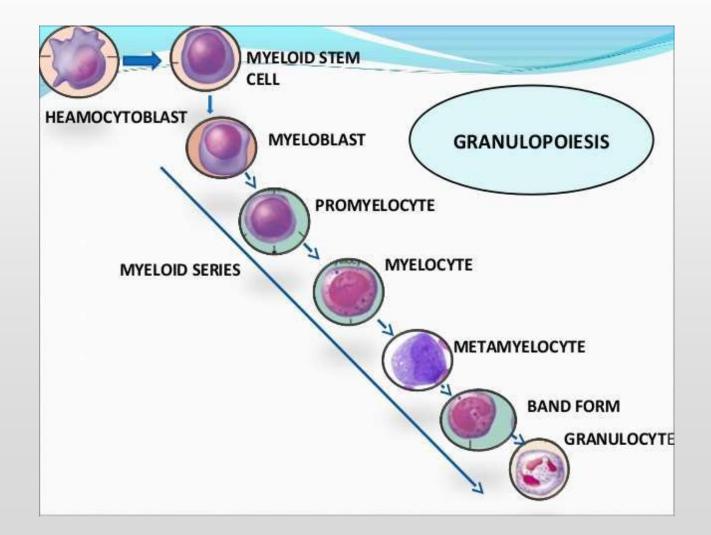

Hematopoiesis

White blood cells (EBC) production

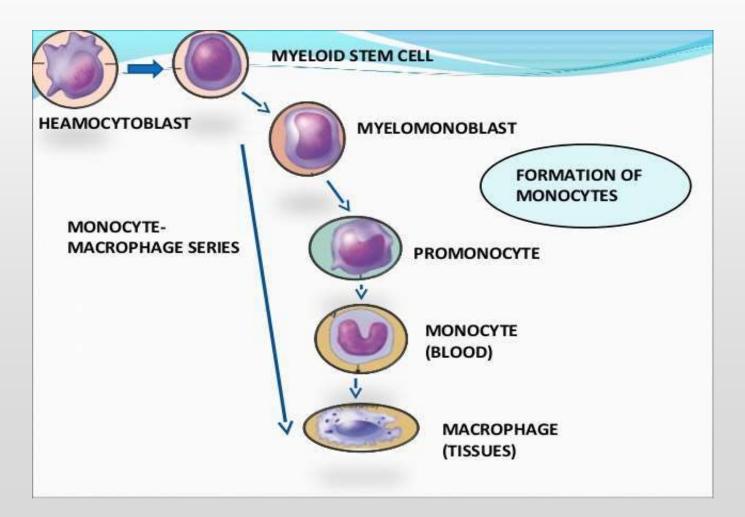
All blood cells originate from hemocytoblasts, which produce:

- **1.** Myeloid Stem Cells
- Differentiate into progenitor cells, which produce all WBCs except lymphocytes
- 2. Lymphoid Stem Cells Lymphopoiesis:
- The production of lymphocytes
- All WBCs, except monocytes, develop fully in bone marrow
- Monocytes develop into macrophages in peripheral tissues

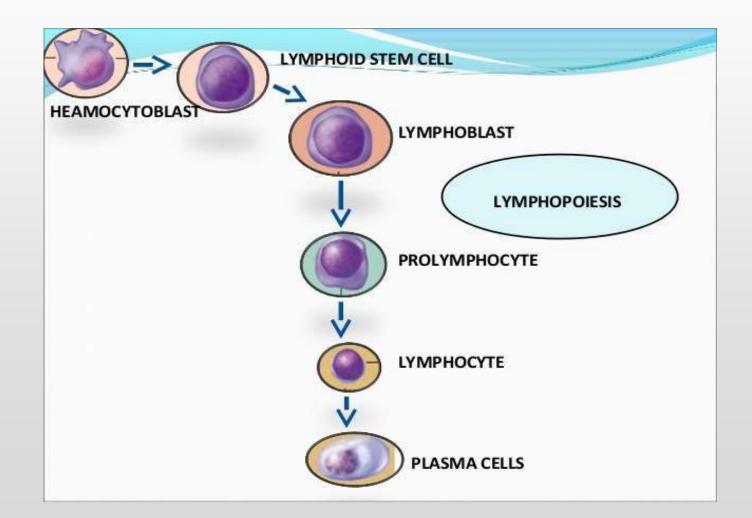
- Myeloid stem cells \rightarrow


Basophils, Eosinophils, Neutrophils, Monocytes as directed by specific colony stimulating factors (CSFs) produced by Macrophages and T cells

- Different CSFs (hormones) results in different cell types:
 - M-CSF stimulates monocyte production
 - G-CSF stimulates production of granulocytes (neutrophils, eosinophils, and basophils)
 - GM-CSF stimulates granulocyte and monocyte production
 - Multi-CSF accelerates production of granulocytes, monocytes, platelets, and RBCs


Granulopoiesis

 Development of granulated leukocytes (neutrophils, eosinophils, basophils)


Monopoiesis

- Process of monocyte formation,
- Monocytes are derived from common myeloid progenitors (CMP) through two distinct developmental pathways.
- Play critical roles in inflammation and maintaining homeostasis within the immune system.

Lymphopoiesis

- Production of new lymphocytes, including B lymphocytes, T lymphocytes, and natural killer (NK) cells.
- The primary (or central) lymphoid organs are thymus that is involved in T-cell lymphopoiesis, and the bone marrow that hosts both B-cell and T-cell precursors.

- At birth, in full term infant: 10,000-25,000/μl of blood
- Infants upto 1 yr of age:6000-16,000/µl of blood
- Adults:4000-11,000/µl of blood

Variations in WBC count

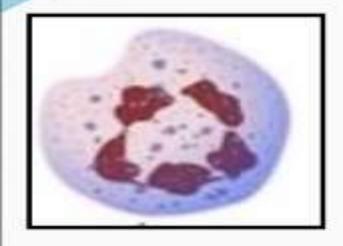
TLC > 11,000/µL(Leucocytosis)

Physiological

- 1.Age
- 2.Exercise
- **3.**Mental stress
- 4.Pregnancy5.After food intake6.Exp.to low temp.

Pathological

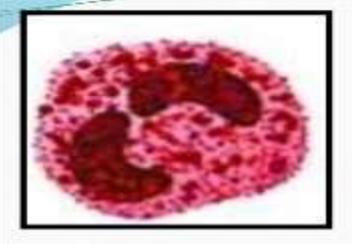
1. Acute bacterial infections (pyogenic org.) 2.Burns **3.**Post-operative period 4. Tuberculosis 5. Glandular fever



- Granulocytes
 - ' Neutrophils
 - Eosinophils

■Agranulocytes Lymphocytes Monocytes

Basophils


Neutrophils

- **1. Cell size-** 10-14μm
- Nucleus- central or eccentric; 2-6 lobes;deep purplish blue
- 3. Cytoplasm- faint pink
- <u>Normal values</u>
- Differential:40
 -75%
- Absolute:2000 -7500/µl of blood

 Granules- fine(pin-point); violetpink in color

Eosinophils

- 1. Cell size- 10-14μm
- Nucleus- central or eccentric; 2-3 lobes; purplish blue; "spectacle shaped"
- Cytoplasm- acidophilic;bright pink in color
 - Granules- large; coarse; crimson red

Normal values • Differential: 1-6%

4.

•Absolute:40-440/µl of blood

Basophils

- 1. Cell size- 10-14μm
- Nucleus- central; 2-3 lobes; purplish blue; overlaid with granules

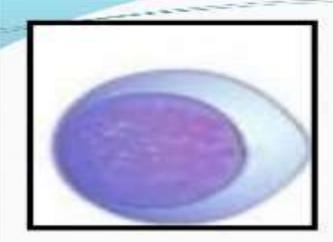
Normal values

3.

4.

- Differential: 0-1%
- •Absolute: 0-100/μl of blood

- Cytoplasm- basophilic; full of granules
- Granules- very coarse, deep purple or blue



Normal values • Differential: 2-10% • Absolute: 500 -800/µl of

blood

Monocyte

- 1. Cell size- 12-20μm
- Nucleus- eccentric or central; round or oval; pale bluish violet
- Cytoplasm- abundant; pale blue; clear

Normal values Differential:2 0-40% Absolute:

1500-4000/µl

of blood

round nucleus; deep purplish blue 3. Cytoplasm- scanty; light blue

Nucleus- eccentric; large

Cytoplasm- scanty; light blue color

Cell size- LL:12-16µm; SL:7-

Lymphocyte

10µm

2.

Life Span Of WBC

- Not constant.
- Neutrophils -> 2-5 days
- Eosinophils -> 7-12 days
- Basophils -> 12-15 days
- □ Monocytes -> 2-5 days
- □ Lymphocytes -> ½-1 day

Properties of WBC,s

• Diapedesis:

Passage through the intact walls of the capillaries, typically accompanying inflammation.

• Amoeboid movement:

Achieved by pseudopodia and involves the flow of cytoplasm as extensions of the organism

• Chemotaxis:

Directed migration of cells in response to concentration gradients of extracellular signals.

• Phagocytosis:

Living cells called phagocytes ingest or engulf other cells or particles.

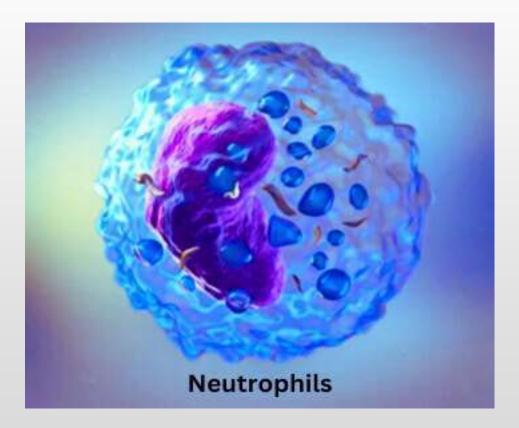
Neutrophils or Polymorphonuclear [PMN] Leukocytes

>Non-specific, defense

> Phagocytic

≻50-70% of all WBCs

>2 - 6 lobed nucleus, 12 µm diameter

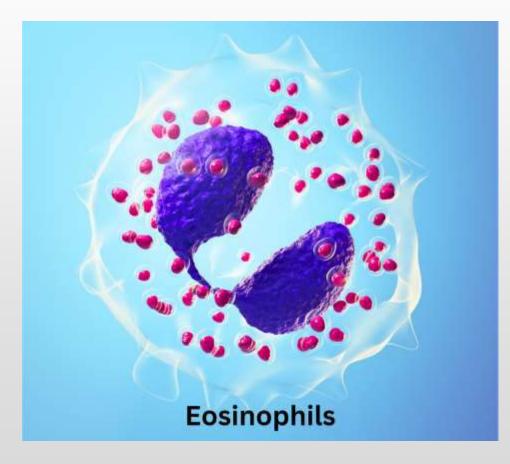

Granules (lysosomes) contain digestive enzymes & defensins that kill bacteria, fungi & enveloped viruses

>Very mobile: first at injury

Life span < 10h</p>

Function :

- Respiratory burst: H2O2 & O2 -, acts a bactericide
- Degranulation: defensins (peptide) lyse bacteria
- Prostaglandins: induce inflammation to stop spread of injury
- Leukotrienes: attract phagocytes

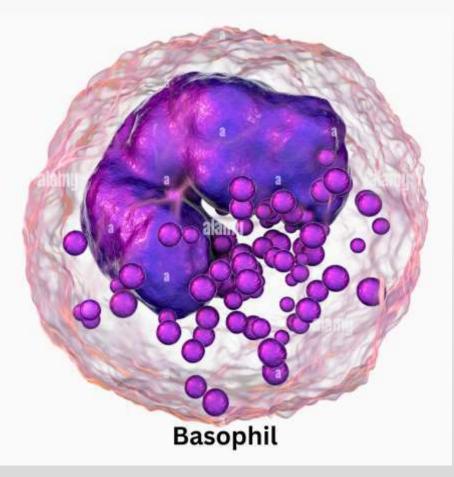


Eosinophils or Acidophils

- Non-specific defense
- Phagocytic
- 2–4% of circulating WBCs
- Bilobed nucleus
- 12 µm diameter; 9-day life

Functions:

- Attack antibody-coated objects (bacteria, protozoa, cell debris)
- Defense against large parasites
- Excrete toxic compounds

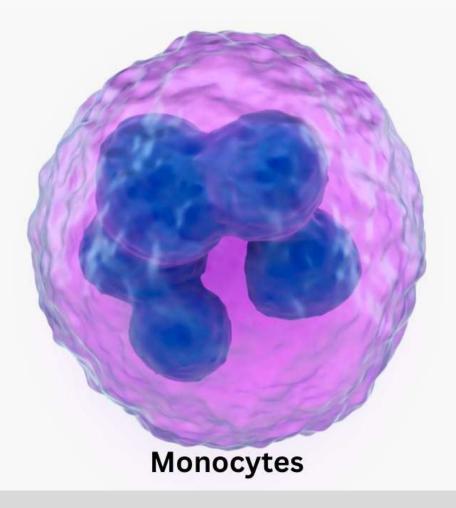


Basophils

- Non-specific defense
- Not phagocytic
- < 1% of WBCs</pre>
- "U" shaped nucleus
- 8 10µm diameter
- Granules contain
- histamine dilate blood vessels
- heparin prevent clotting
- Life span = 9

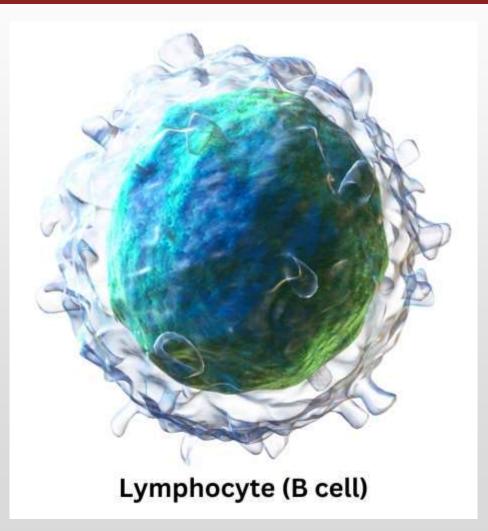
Functions:

□ Inflammation □ Allergic response (via histamine)



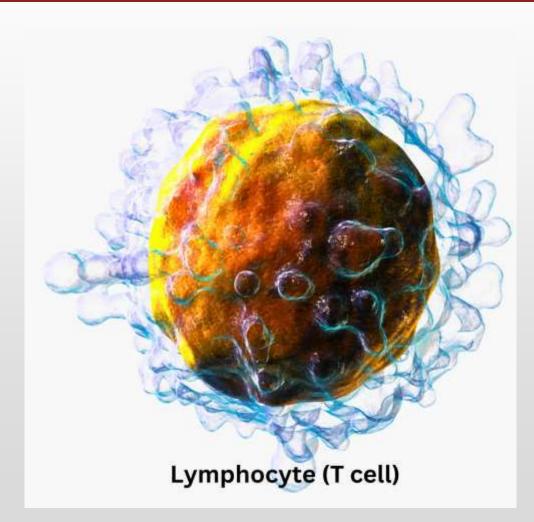
Monocytes

- Non-specific defense (Phagocytic)
- 2-8% of WBCs
- Kidney shaped nucleus (15 µm + diameter)
- Circulate 24 h, then exit to tissues = macrophage
- Life span = several months


Functions:

- Phagocytosis: viruses and bacteria
- Attract phagocytes
- Attract fibroblasts for scar formation
- Activate lymphocytes: to mount immune response

Lymphocytes


- Immune-Specific Response
- 20-30% of WBCs, Large round nucleus
- 5-17µm diameter,
- Migratory between blood and tissues (bidirectional)
- Most in lymphatic system
- Life span = days to lifetime

Function

Depends on type: \Box

- T cells: cell-mediated immunity (attack foreign cells directly or control the activity of other lymphocytes)
- B cells: humoral immunity (differentiate into plasma cells & synthesize and secrete antibodies)
- Natural Killer (NK) cells: immune surveillance (detect and destroy abnormal tissue; e.g., cancer)

Difference between the different types of leucocytes:

Characters	Lymphocytes	Monocytes	Eosinophils	Basophils	Neutrophils
Percentage in total leucocytes	<mark>20 - 25</mark> %	2-8%	2 - 3%	0.5 – 1%	60 - 65%
Granules in cytoplasm	Absent	Absent	Coarse	Coarse	Fine
Nucleus	Round	Bean-shaped	Bilobed	S-shaped	Multilobed
Life span	Few days or maybe years	10-12 hours	14 hours	8-12 hours	10-12 hours
Functions	Responsible for the body's immune responses	Phagocytic	Role in immunity and antiallergy	Involved in inflammatory reactions	Phagocytic

Common white blood cell disorders

Leukocytosis:

This is an increased number of white blood cells. Possible causes include bacterial or viral infections, certain medications, allergies, smoking, inflammatory diseases, autoimmune disorders, a genetic condition, and cancer.

Autoimmune neutropenia:

This is seen when the body produces antibodies that attack and destroy neutrophils. It is associated with various conditions, including Crohn's disease and rheumatoid arthritis.

Cont.

• <u>Autoimmune neutropenia</u>:

This is seen when the body produces antibodies that attack and destroy neutrophils. It is associated with various conditions, including Crohn's disease and rheumatoid arthritis.

Severe congenital neutropenia:

This occurs secondary to a genetic mutation. People with severe congenital neutropenia have recurrent bacterial infections.

<u>Chronic granulomatous disease:</u>

This is a disorder where multiple types of WBCs (neutrophils, monocytes, macrophages) are unable to function properly. It is an inherited condition and results in multiple infections, particularly pneumonia and abscesses.

Cont.

 Chronic granulomatous disease: This is a disorder where multiple types of WBCs (neutrophils, monocytes, macrophages) are unable to function properly. It is an inherited condition and results in multiple infections, particularly pneumonia and abscesses.